Search results for "LINEAR ENERGY TRANSFER"

showing 10 items of 18 documents

Pigment−Pigment and Pigment−Protein Interactions in Recombinant Water-Soluble Chlorophyll Proteins (WSCP) from Cauliflower

2007

Plants contain water-soluble chlorophyll-binding proteins (WSCPs) that function neither as antennas nor as components of light-induced electron transfer of photosynthesis but are likely constituents of regulatory protective pathways in particular under stress conditions. This study presents results on the spectroscopic properties of recombinant WSCP from cauliflower reconstituted with chlorophyll b (Chl b) alone or with mixtures of Chl a and Chl b. Two types of experiments were performed: (a) measurements of stationary absorption spectra at 77 and 298 K and CD spectra at 298 K and (b) monitoring of laser flash-induced transient absorption changes with a resolution of 200 fs in the time doma…

Chlorophyll bCircular dichroismAbsorption spectroscopyCircular DichroismLasersDimerKineticsLight-Harvesting Protein ComplexesBrassicaPigments BiologicalRecombinant ProteinsSurfaces Coatings and FilmsKineticschemistry.chemical_compoundCrystallographyElectron transferchemistryUltrafast laser spectroscopyChlorinMaterials ChemistryLinear Energy TransferSpectrophotometry UltravioletPhysical and Theoretical ChemistryThe Journal of Physical Chemistry B
researchProduct

Analysis of the spatial distribution of free radicals in ammonium tartrate by pulse EPR techniques

2009

Using pulse electron paramagnetic resonance (EPR) on a series of l(+)-ammonium tartrate (AT) dosimeters exposed to radiations with different linear energy transfer (LET), we assessed the ability of pulse EPR spectroscopy to discriminate the quality of various radiation beams such as (60)Co gamma-ray photons, protons and thermal neutrons at various doses by analyzing the local radical distributions produced by the different beams. We performed two types of pulse EPR investigations: two-pulse electron spin echo decay obtained by varying the microwave power, and a double electron-electron resonance (DEER) study. Both methods provide information about the dipolar interactions among the free rad…

Free RadicalsBiophysicsAnalytical chemistryradical distribution; radiation dosimetry; ESR spectroscopyLinear energy transferElectronsRadiationTartrateRadiation Dosagelaw.inventionDiffusionchemistry.chemical_compoundlawAmmonium Tartrate by Pulse EPR TechniquesRadiology Nuclear Medicine and imagingCobalt RadioisotopesRadiometrySpectroscopyElectron paramagnetic resonanceTartratesNeutronsRadiationPulsed EPRElectron Spin Resonance SpectroscopyResonanceESR spectroscopyNeutron temperatureradiation dosimetrychemistryGamma Raysradical distributionProtons
researchProduct

High resistance to X-rays and therapeutic carbon ions in glioblastoma cells bearing dysfunctional ATM associates with intrinsic chromosomal instabili…

2014

To investigate chromosomal instability and radiation response mechanisms in glioblastoma cells.We undertook a comparative analysis of two patient-derived glioblastoma cell lines. Their resistance to low and high linear energy transfer (LET) radiation was assessed using clonogenic survival assay and their intrinsic chromosome instability status using fluorescence in situ hybridization. DNA damage was analyzed by pulsed-field gel electrophoresis and by γ-H2AX foci quantification. Expression of DNA damage response proteins was assessed by immunoblot.Increased radioresistance to X-rays as well as carbon ions was observed in glioblastoma cells exhibiting high levels of naturally occurring chromo…

Genome instabilityDNA RepairDNA damageLinear energy transferHeavy Ion RadiotherapyAtaxia Telangiectasia Mutated ProteinsBiologyRadiation ToleranceCell Line TumorChromosomal InstabilityRadioresistanceChromosome instabilitymedicineHumansDNA Breaks Double-StrandedLinear Energy TransferRadiology Nuclear Medicine and imagingGel electrophoresisRadiological and Ultrasound Technologymedicine.diagnostic_testX-RaysCell CycleGenomicsMolecular biologyPhosphorylationGlioblastomaSignal TransductionFluorescence in situ hybridizationInternational Journal of Radiation Biology
researchProduct

Toward a wave turbulence formulation of statistical nonlinear optics

2012

International audience; During this last decade, several remarkable phenomena inherent to the nonlinear propagation of incoherent optical waves have been reported in the literature. This article is aimed at providing a generalized wave turbulence kinetic formulation of random nonlinear waves governed by the nonlinear Schrodinger equation in the presence of a nonlocal or a noninstantaneous nonlinear response function. Depending on the amount of nonlocal (noninstantaneous) nonlinear interaction and the amount of inhomogeneous (nonstationary) statistics of the incoherent wave, different types of kinetic equations are obtained. In the spatial domain, when the incoherent wave exhibits fluctuatio…

MODULATION INSTABILITYFIBER LASERLangmuir TurbulenceWave propagationWave turbulencePROPAGATION01 natural sciencesKERR MEDIA010305 fluids & plasmassymbols.namesakeLINEAR ENERGY TRANSFERINCOHERENT-LIGHT BEAMS[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]0103 physical sciences010306 general physicsNonlinear Schrödinger equationPHOTOREFRACTIVE MEDIAPhysicsSPATIAL SOLITONSSUPERCONTINUUM GENERATIONVlasov equationStatistical and Nonlinear Physics[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]THERMALIZATIONAtomic and Molecular Physics and Optics[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Nonlinear systemModulational instabilityClassical mechanicssymbolsSolitonJournal of the Optical Society of America B
researchProduct

RADICAL DISTRIBUTIONS IN AMMONIUM TARTRATE SINGLE CRYSTALS EXPOSED TO PHOTON AND NEUTRON BEAMS

2014

The radiation therapy carried out by means of heavy charged particles (such as carbon ions) and neutrons is rapidly becoming widespread worldwide. The success of these radiation therapies relies on the high density of energy released by these particles or by secondary particles produced after primary interaction with matter. The biological damages produced by ionising radiations in tissues and cells depend more properly on the energy released per unit pathlength, which is the linear energy transfer and which determines the radiation quality. To improve the therapy effectiveness, it is necessary to grasp the mechanisms of free radical production and distribution after irradiation with these …

Materials sciencePhotonFree RadicalsTrack nanodosimetryLinear energy transferElectronsRadiationMolecular physicsIonizing radiationMagneticsRadiation IonizingRadiology Nuclear Medicine and imagingHeavy IonsIrradiationCobalt RadioisotopesRadiometryTartratesNeutronsRange (particle radiation)PhotonsRadiationRadiological and Ultrasound TechnologyRadiation induced radicals ammonium tartrate pulsed electron paramagnetic resonanceelectron spin resonancePublic Health Environmental and Occupational HealthElectron Spin Resonance SpectroscopyGeneral MedicineCharged particleNeutron temperatureSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CarbonGamma RaysTrack nanodosimetry; electron spin resonanceCrystallization
researchProduct

An EPR method for discriminating radiation beams in ammonium tartrate and tooth enamel

2008

The radiation linear energy transfer (LET), which is the energy released by ionizing radiation per path unit, arouses great scientific interest because the biological damage produced by ionizing radiation in tissues is strictly related to LET. Radiation beams with different LETs will cause different spatial energy distribution and therefore different effects inside matter. In the last twenty years the EPR spectroscopy has become a valuable dosimetric tool. This technique allows absorbed dose measurements through the detection of free radicals produced by ionizing radiation in organic and/or inorganic compounds. In this work we have analyzed the possibility of using the acquisition of two co…

Materials scienceRenewable Energy Sustainability and the EnvironmentHealth Toxicology and MutagenesisPublic Health Environmental and Occupational HealthLinear energy transferRadiationIonizing radiationlaw.inventionNuclear Energy and EngineeringlawAbsorbed doseDosimetryIrradiationAtomic physicsSafety Risk Reliability and QualityElectron paramagnetic resonanceAbsorption (electromagnetic radiation)Waste Management and DisposalRadioprotection
researchProduct

Semi-Empirical Model for SEGR Prediction

2013

The underlying physical mechanisms in single event gate rupture (SEGR) are not known precisely. SEGR is expected to occur when the energy deposition due to a heavy ion strike exceeds a certain threshold simultaneously with sufficient electric field across the gate dielectric. Typically the energy deposition is described by using the linear energy transfer (LET) of the given ion. Previously the LET has been demonstrated not to describe the SEGR sufficiently. The work presented here introduces a semi-empirical model for the SEGR prediction based on statistical variations in the energy deposition which are described theoretically.

Nuclear and High Energy PhysicsEngineeringWork (thermodynamics)ta114business.industryGate dielectricLinear energy transferMechanicsIonNuclear Energy and EngineeringElectric fieldDeposition (phase transition)Electrical and Electronic EngineeringbusinessEvent (particle physics)Energy (signal processing)SimulationIEEE Transactions on Nuclear Science
researchProduct

Mechanisms of Electron-Induced Single-Event Latchup

2019

In this paper, possible mechanisms by which electrons can induce single-event latchups in electronics are discussed. The energy deposition and the nuclear fragments created by electrons in silicon are analyzed in this context. The cross section enhancement effect in the presence of high-Z materials is discussed. First experimental results of electron-induced latchups are shown in static random access memory devices with low linear energy transfer thresholds. The radiation hardness assurance implications and future work are discussed.

Nuclear and High Energy PhysicsWork (thermodynamics)Materials scienceSiliconchemistry.chemical_elementLinear energy transferContext (language use)Electronhiukkaskiihdyttimetelektronit01 natural sciencesradiation physics0103 physical sciencesElectronicsStatic random-access memoryDetectors and Experimental TechniquesElectrical and Electronic EngineeringRadiation hardeningta114010308 nuclear & particles physicsbusiness.industryelectronsparticle acceleratorssäteilyfysiikkaNuclear Energy and EngineeringchemistryOptoelectronicsbusinessIEEE Transactions on Nuclear Science
researchProduct

Proton Direct Ionization in Sub-Micron Technologies: Numerical Method for RPP Parameter Extraction

2022

This work introduces a numerical method to iteratively extract parameters of a rectangular parallelepiped (RPP) sensitive volume (SV) from experimental proton direct ionization SEU data. The method combines two separate numerical models. The first model estimates the average LET values for energetic ions, including protons and also heavy ions, in elemental solid targets. The second model describes the statistical variance in the energy deposition events of projectile-induced primary ionization within a RPP shaped target volume. To benchmark the method, simulated cross-section values based on RPP parameters derived with this method are compared with literature data from four SRAM devices. Th…

Nuclear and High Energy Physicssingle event upset (SEU)protonitnumeeriset menetelmätionisoiva säteilyMonte Carlo (MC) methodstragglingMonte Carlo -menetelmätNuclear Energy and Engineeringsäteilyfysiikkarectangular parallelepiped (RPP)proton direct ionization (PDI)Electrical and Electronic Engineeringlinear energy transfer (LET)IEEE Transactions on Nuclear Science
researchProduct

Condensation of classical optical waves beyond the cubic nonlinear Schrodinger equation

2012

International audience; A completely classical nonlinear wave is known to exhibit a process of condensation whose thermodynamic properties are analogous to those of the genuine Bose-Einstein condensation. So far this phenomenon of wave condensation has been studied essentially in the framework of the nonlinear Schrodinger (NLS) equation with a pure cubic Kerr nonlinearity. We study wave condensation by considering two representative generalizations of the NLS equation that are relevant to the context of nonlinear optics, the nonlocal nonlinearity and the saturable nonlinearity. For both cases we derive analytical expressions of the condensate fraction in the weakly and the strongly nonlinea…

POLARIZATIONPROPAGATION01 natural sciences010305 fluids & plasmaslaw.inventionsymbols.namesakeLINEAR ENERGY TRANSFERlawQuantum mechanics0103 physical sciencesBOSE-EINSTEIN CONDENSATIONElectrical and Electronic EngineeringPhysical and Theoretical Chemistry010306 general physicsNonlinear Schrödinger equationNonlinear Sciences::Pattern Formation and SolitonsPhysicsCondensed Matter::Quantum GasesINCOHERENT-LIGHTSPECTRUMAnalytical expressionsTurbulenceNonlinear opticsPolarization (waves)THERMALIZATIONAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsRAMAN FIBER LASERMODELNonlinear systemClassical mechanicsThermalisationsymbolsTURBULENCEBose–Einstein condensate
researchProduct